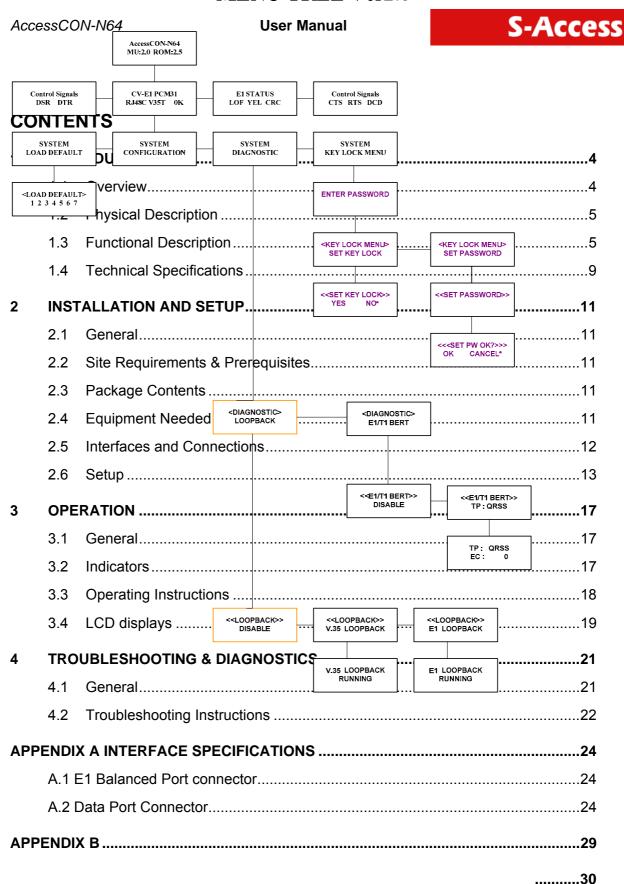


### **AccessCON-N64**


### **INTERFACE CONVERTER E1/FRACTIONAL E1 TO N64**

INSTALLATION AND OPERATION MANUAL

Version 1

© Copyright © 2005 by S-Access GmbH. The contents of this publication may not be reproduced in any part or as a whole, transcribed, stored in a retrieval system, translated into any language, or transmitted in any form or by any means, electronic, mechanical, magnetic, optical, chemical, photocopying, manual, or otherwise, without the prior written permission of S-Access GmbH. Published S-Access GmbH. All rights reserved.

# AccessCON-N64 MENU TREE Ver2.0



#### 1 INTRODUCTION

#### 1.1 Overview

AccessCON-N64 is a cost-effective, single-port fractional E1 access unit. The fractional E1 service makes unused time slots on long-range E1 trunks available for other users.

AccessCON-N64 provides a synchronous data channel that supports user-selectable transmission rates. The available data rates are integer multiples of 64 kbps; the multiples range is 1 through 32, corresponding to a maximum of 2048 kbps. The user's payload data is packed in the corresponding number of time slot of an E1 (CEPT 2.048 Mbps) data stream, for transmission over public or private E1 networks.

#### Versions

AccessCON-N64 is available on two models:

- AccessCON-N64 fractional E1 access unit, for applications that integer multiples of 64 kbps range from 1 through 32, corresponding to a maximum of 2048 kbps.
- AccessCON-N64 Unfr Unframed only, for applications that fix 2048 Mbps data rate.

#### **Applications**

Figure 1.1 shows a typical AccessCON-N64 / Unfr applications.



Fig. 1.1. Typical AccessCON-N64 Application

#### **Features**

- E1 or fractional E1 access unit.
- Support one digital data port.
- Selectable sync data rates of n x 64 kbps, up to 2048 kbps.
- V.35, RS-530, RS-449 or X.21 data interfaces.
- Framing format: PCM31, PCM30 with or without CRC-4.
- Zero suppression: AMI, HDB3.
- E1 interface complies with: ITU G.703, G.704, G.732, G.823, G.706.
- Unframed over E1.

#### **Options**

AccessCON-N64 is available with the following option:

- 90 120 or 230V (10%), 47-63 Hz Adapter.
- DTE or DCE data port changeable cable.
- AccessCON-N64-Unfr is simple version with unframed mode.

#### 1.2 Physical Description

AccessCON-N64 / Unfr are designed for desktop installation.

Installation procedures for the AccessCON-N64 / Unfr models and respective versions are provided in Chapter 2, *Installation and Setup*.

#### Top Panel

#### LED's

The LED indicators on the top panel (see Figure 1.2) indicate the operating status of AccessCON-N64. Various indicators display status of E1 or data port, alert conditions, work mode.

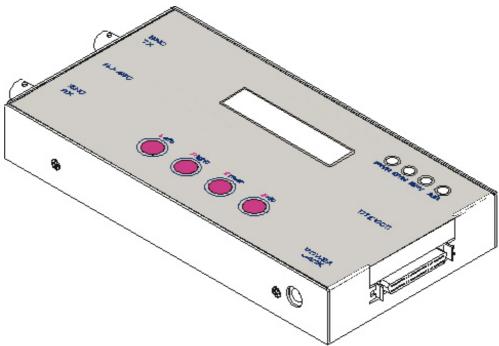



Fig. 1.2. General View

#### Connectors

The power and interface connectors are located on the lateral panel of AccessCON-N64 / Unfr. A description of the lateral panel can be found in *interfaces and connectors*.

#### 1.3 Functional Description

AccessCON-N64 / Unfr has a synchronous user's data port interface. The electrical interface is user-selectable. The user's data port is terminated in a 50-pin SCSI-type female connector. ITU-



T Rec. V.35, EIA RS-530, RS-449 and X.21 interfaces are supported by means of adapter cables.

The user's data port has two timing modes:

 DCE – AccessCON-N64 provides transmit and receive clocks for the user's equipment connected to the data port. And accepts XTC clock from the equipment. Figure 1.3 shows the flow of timing signals through the user's data port in the DCE mode.

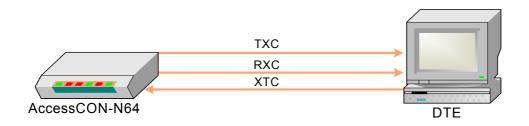



Fig. 1.3. DCE Description

• **DTE** – AccessCON-N64 sends the receive data accompanied by the receive clock to the user's equipment connected to the data port, and accepts data from the equipment according to the equipment transmit clock. *Figure 1-4* shows the flow of timing signals through the user's data port in the DTE mode.

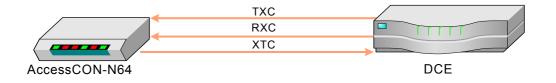



Fig. 1.4. DTE Description

#### E1 Interface Characteristics

The AccessCON-N64 E1 link interface meets the requirements of ITU-T Rec. G.703, G.704, G.706, G.823.

The E1 link has two line interfaces: a 120-ohm balanced line interface terminated in a RJ-48 eight-pin female connector, and a 75-ohm unbalanced interface terminated in two BNC female coaxial connectors. Line coding is HDB-3 or AMI. The nominal balanced interface transmit level is  $\pm 3V$ , and the unbalanced interface transmit level is  $\pm 2.37V$ . Jitter performance complies with the requirements of ITU-T Rec. G.823.

The E1 link interface supports PCM 31 frames (time slot 16 available for user's data), and PCM 30 frames (time slot 16 not available for user's data). AccessCON-N64 also supports the CRC-4 option specified in ITU-T Rec. G.704. The framing mode and the use of the CRC-4 option are independently selectable by the user.

In addition, AccessCON-N64 can also operate in the unframed mode. In this mode, AccessCON-N64 Unfr operates as an interface converter, enabling the transfer of unstructured 2.048 Mbps data streams (or data streams with proprietary framing generated by equipment with ITU-T Rec. V.35, EIA RS-530, EIA RS-449), and X.21 interfaces via the E1 network.



**Note:** The AccessCON-N64-Unfr always operates in unframed mode.

The user can select the number of main link time slots used to carry the payload data.

The timing of the receive path of the AccessCON-N64 / Unfr E1 link interface is always locked to the clock signal recovered from the received line signal. The timing of transmit path can be locked to one of the following three sources:

- Internal clock oscillator, having an accuracy of ±30 ppm.
- The recovered receive clock signal. The maximum track range is ±130 ppm.
- Lock data port clock signal. The maximum track range is ±100 ppm.

#### Control of AccessCON-N64 Operation

AccessCON-N64 is designed for fully automatic, unattended operation. Its configuration is determined by keypads and LCD-menu. Top panel LED indicators and LCD display show the operating status of AccessCON-N64. Various indicators display the E1 link status and user's data port status, and alert when an alarm condition (major or minor) or test loops are present in the system.

AccessCON-N64 / Unfr has comprehensive diagnostic capabilities that include LL and DL loopbacks, controlled by top panel keypads and LCD-menu. Maintenance is further enhanced by a power-up self-test.

#### Selection of System Timing Mode

This section explains the interaction between the user's port timing mode, and the E1 link transmit timing mode.

• Internal timing mode: The AccessCON-N64 / Unfr E1 link transmit signal is derived from the internal clock oscillator. This timing mode used is necessary in point-to-point application over leased lines, e.g., short-range applications, where one AccessCON-N64 / Unfr must provide the timing reference for the link. In this case, one AccessCON-N64 / Unfr must use the internal oscillator, and other must operate on the recovered clock signal. Note that when the internal oscillator is used, the DCE or DTE timing mode should be selected to synchronize the user data rate to the E1 link timing.

Figure 1.5 shows a typical system application using the internal timing mode on conjunction with DCE timing.

Fig. 1.5. Internal timing mode

E1 timing mode: With E1 timing, the AccessCON-N64 / Unfr link transmit signal is locked to the recovered E1 receive clock. This is usually the timing mode selected for network operation, as shown in Figure 1.6. In the application illustrated in Figure 1.6, the master clock of the network determines the timing of the two AccessCON-N64 / Unfr units. In case the E1 receive signal is lost, AccessCON-N64 / Unfr automatically switches to the internal oscillator.



Fig. 1.6. E1 timing mode

DTE/DCE timing mode: The E1 transmit signal is locked to the recovered DTE or DCE receive clock, as shown in Figure 1.7. And the other equipments must operate on the recovered E1 clock signal. This is usually the timing mode selected for E1-Mux. application.



Fig. 1.7. DTE/DCE timing mode

### 1.4 Technical Specifications

| E4 Linkstone      |                     | Hafaana dhaada                                                                    |  |  |
|-------------------|---------------------|-----------------------------------------------------------------------------------|--|--|
| E1 Link Interface | Framing             | Unframed mode                                                                     |  |  |
|                   |                     | PCM31 without CRC-4                                                               |  |  |
|                   |                     | PCM31 with CRC-4                                                                  |  |  |
|                   |                     | PCM30 without CRC-4                                                               |  |  |
|                   |                     | PCM30 with CRC-4                                                                  |  |  |
|                   | Bit rate            | 2.048 Mbps                                                                        |  |  |
|                   | Line code           | HDB3                                                                              |  |  |
|                   |                     | AMI                                                                               |  |  |
|                   | Line                | Balanced interface 120 ohms                                                       |  |  |
|                   | impedance           | Unbalanced interface 75 ohms                                                      |  |  |
|                   | Signal levels       | Transmit level:                                                                   |  |  |
|                   |                     | Balanced interface ±3V ±10%                                                       |  |  |
|                   |                     | Unbalanced interface ±2.37V ±10%                                                  |  |  |
|                   |                     | Receive level 0 to -36dB                                                          |  |  |
|                   | Jitter              | As per ITU-T Rec. G.823                                                           |  |  |
|                   | performance         |                                                                                   |  |  |
|                   | Connectors          | Balanced interface RJ-48 eight-pin connector                                      |  |  |
|                   |                     | Unbalanced interface Two                                                          |  |  |
|                   |                     | BNC coaxial connectors                                                            |  |  |
|                   | Transmit timing     | Internal- ±30 ppm oscillator                                                      |  |  |
|                   |                     | E1- Locked to the recovered                                                       |  |  |
|                   |                     | E1 receive clock, tracking range ±130 ppm                                         |  |  |
|                   |                     | DTE/DCE-Locked to the recovered DTE or DCE receive clock, tracking range ±100 ppm |  |  |
| User's Data port  | Connector           | 50-pin, SCSI-type female                                                          |  |  |
|                   | Interface           | V.35, RS-530,Rs-449, and X.21 supported by adapter cables                         |  |  |
|                   | Bit rates           | Framed modes-n X 64 kbps, where n equals 1, 2, 3,, 31                             |  |  |
|                   |                     | Unframed mode-2048 kbps                                                           |  |  |
|                   | Control signals     | CTS follows E1 sync or constantly ON, user-selectable                             |  |  |
|                   |                     | DSR follows E1 sync or constantly ON, user-selectable                             |  |  |
|                   |                     | DCD follows E1 sync or constantly ON, user-selectable.                            |  |  |
|                   | Signals<br>polarity | Transmit data and receive clock operates normal or invert                         |  |  |
| TimeSlot          | Framed              | User data inserted in user assert time slots                                      |  |  |
| allocation        | modes               | Others can be bypassed                                                            |  |  |
|                   |                     | User-selectable idle code in empty time slots (7F or FF)                          |  |  |

|                  | Unframed<br>mode                                      | Bit-by-bit transfer from data port to E1 link |
|------------------|-------------------------------------------------------|-----------------------------------------------|
| Diagnostics      | Test loops Local loopback (LL), towards local DTE DCE |                                               |
|                  |                                                       | Digital loopback (DL), towards local E1 link  |
| Indicators       | ndicators power indicator SYNC E1 sync                |                                               |
|                  |                                                       | loss indicator BPV alarm                      |
|                  |                                                       | indicator AIS alarm indicator                 |
| Mechanical Chara | cteristics                                            |                                               |
| Power            |                                                       | Use external power adapter                    |
| Requirements     |                                                       | Support voltage:                              |
|                  |                                                       | 90-120 VAC±10%, 47 to 63 Hz                   |
|                  |                                                       | 230 VAC±10%, 47 to 63 Hz                      |
|                  |                                                       | Power consumption 5Watt                       |
| Environmental    | Temperature                                           | 0 to 50°C                                     |
| Characteristics  | Humidity                                              | Up to 90%, non-condensing                     |



#### 2 INSTALLATION AND SETUP

#### 2.1 General

This chapter provides instructions for mechanical and electrical installation of the AccessCON-N64 / Unfr model.

After installing the unit, refer to Chapter 3, *Operation* for operating instructions. In case a problem is encountered, refer to Chapter 4 *Troubleshooting & Diagnostics* for test and diagnostics instructions.

**Warning!** No internal setting, adjustment, maintenance, and repairs may be performed by either the operator or the user; such activities may be performed only by a skilled technician who is aware of the hazards involved. Always observe standard safety precautions during installation, operation, and maintenance of this product.

#### 2.2 Site Requirements & Prerequisites

AC powered AccessCON-N64 / Unfr units should be installed within an easily accessible, grounded AC outlet capable of furnishing the nominal supply voltage (100-115 or 230 VAC, in accordance with your order).

The ambient operating temperature of AccessCON-N64 / Unfr is 0 to 50°C at a relative humidity of up to 90%, non-condensing

#### 2.3 Package Contents

A preliminary inspection of the equipment container should be made before unpacking. Evidence of damage should be noted and reported immediately. The AccessCON-N64 / Unfr package includes the following items:

AccessCON-N64 unit

CD disk or Installation and Operation Manual

External power adapter

Data port connection cable depending on user order

#### 2.4 Equipment Needed

The cables you need depend on the application. Cable terminated in appropriate connectors provides support for the following data port interfaces:

- V.35 interface: the interface adapter cable ends in a 34-pin connector
- RS-530 interface: the interface adapter cable ends in a 25-pin D-type connector
- RS-449 interface: the interface adapter cable ends in a 37-pin D-type connector
- X.21 interface: the interface adapter cable ends in a 15-pin D-type connector

The required cables are available from S-ACCESS, or can be prepared in accordance with the port connector wiring information given in Appendix A, *Interface Specifications*. The available cable and their respective uses are listed in *Table 2-1* 

Table 2.1. Data Port Interface Cables.

|       | Purpose        |                             |                |         |  |
|-------|----------------|-----------------------------|----------------|---------|--|
| Cable | Port Interface | Cable Connector<br>End-Type | User Equipment | Length  |  |
| V35T  | V.35 DCE       | M34 Female                  | V.35 DTE       | 1 meter |  |
| V35C  | V.35 DTE       | M34 Male                    | V.35 DCE       | 1 meter |  |
| 530T  | EIA-530 DTE    | DB-25 Female                | EIA-530 DTE    | 1 meter |  |
| 530C  | EIA-530 DCE    | DB-25 Male                  | EIA-530 DCE    | 1 meter |  |
| 449T  | RS-449 DTE     | DB-37 Female                | RS-449 DTE     | 1 meter |  |
| 449C  | RS-449 DCE     | DB-37 Male                  | RS-449 DCE     | 1 meter |  |
| X21T  | X.21 DTE       | DB-15 Female                | X.21 DTE       | 1 meter |  |
| X21C  | X.21 DCE       | DB-15 Male                  | X.21 DCE       | 1 meter |  |

#### 2.5 Interfaces and Connections

Both the AccessCON-N64 and AccessCON-N64-Unfr versions use the same printed circuit board, the procedure is the same.

Warning ELECTRICAL SHOCK HAZARD: Access to the inside of the unit is permitted only to qualified and authorized service personnel. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled technician who is aware of the hazard involved. Capacitors inside the instrument may still be charged even after the instrument has been disconnected from its source of supply.

**Caution:** AccessCON-N64 / Unfr contains components sensitive to electrostatic discharge (ESD). To prevent ESD damage, avoid touching internal components and before moving jumpers, touch the AccessCON-N64 / Unfr frame.

#### E1 Link Connections

AccessCON-N64 / Unfr E1 link has an RJ-48C eight-pin connector for the balanced interface, and two BNC connectors for the unbalanced interface. Appendix A, *E1 Balanced Port Connector* provides the pin allocation for the RJ-48C connector.

Connector the E1 link cables to the connector(s) corresponding to the interface in use.

Warning! Do not connect to both the balanced and unbalanced connectors!



- When using the balanced interface, connect to the RJ-48C connector
- When using the unbalanced interface, connect to the two BNC connectors designated TX and RX. Pay attention to the correct connection of the receive and transmit cables to the TX and RX connectors.
- The maximum allowable line attenuation between the AccessCON-N64 E1 link port and the network interface is 1000 Ft / 26AWG in general case.

#### **Data Port Connections**

The AccessCON-N64 / Unfr user data port has a 50-pin SCSI-type female connector.

Connect the DTE / DCE link cable to the SCSI connector after setting pin-out configuration corresponding to the interface in use.

#### Connecting the Power

AccessCON-N64 / Unfr is available in models that differ in the rated supply voltage: 120, 230 or 240 VAC.

Before first-time installation, check that the power-adapter nominal supply voltage, marked on a label on its top panel, matches the nominal voltage available at your mains outlet.

#### 2.6 Setup

After Installation, You must be to check below list:

- The Power LED indicator always lights when AccessCON-N64 / Unfr is powered.
- The LCD Display will warming-up after 10 seconds.

To configure setting the AccessCON-N64 use keypads and LCD on top panel as shown in Figure 2.1. The settings are listed in Table 2.2. You can follow the rules below table to setup the AccessCON-N64.

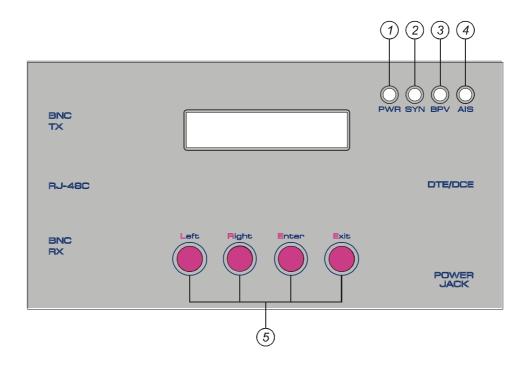



Fig. 2.1. AccessCON-N64 / Unfr Top Panel View

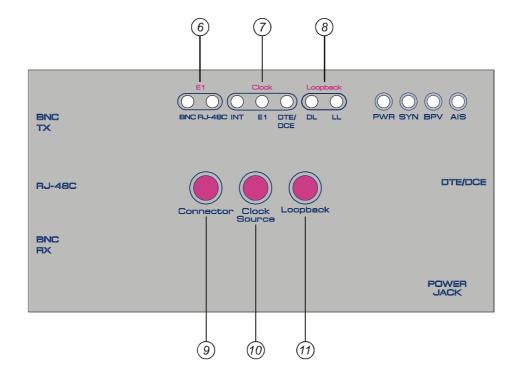





Table 2.2 Settings.

| Identification of Setting                                                                                   | Function                                          | Settings                                                                                                                                                                                                                        | Factory Setting                 |
|-------------------------------------------------------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Main→ E1 SETUP → Framing                                                                                    | Select E1 Frame operating mode                    | PCM31 - CCS without<br>CRC4<br>PCM31+CRC - CCS with<br>CRC4<br>PCM30 - CAS without<br>CRC4<br>PCM30+CRC - CAS with<br>CRC4                                                                                                      | PCM31                           |
| Main→ E1 SETUP → Idle Code                                                                                  | Selects the idle code transmission                | 7F – Symbol in HEX. FF – Symbol in HEX. Pass –Pass through E1 Rx timeslot data to Tx.                                                                                                                                           | Pass                            |
| Main→ E1 SETUP →<br>Line Coding                                                                             | Select E1 port coding, frame structure            | AMI<br>HDB3                                                                                                                                                                                                                     | HDB3                            |
| Main→ E1 SETUP<br>→Impedance                                                                                | Selection of E1 link interface                    | BNC – unbalanced 75<br>ohms interface<br>RJ48C – balanced 120<br>ohms interface                                                                                                                                                 | RJ48C                           |
| Main→ E1 SETUP<br>→Clock source                                                                             | Selects System reference clock                    | INTERNAL - follow internal oscillator E1 (G703) –locked to E1 recovered receive clock. In case the E1 receive signal is lost, switches to the internal oscillator automatically.  DTE/DCE –follow user data port receive clock. | E1 (G703)                       |
| Main→ TS Mapping                                                                                            | Select use timeslot<br>and operating data<br>rate | ALL – Setting all timeslot<br>to carry data or non-used.<br>*- enable timeslot to carry<br>data<br>F– inhabited by Framing                                                                                                      | Enable timeslot 1 for data port |
| Main→ DTE/DCE<br>SETUP→DSR Option<br>Main→ DTE/DCE<br>SETUP→CTS Option<br>Main→ DTE/DCE<br>SETUP→DCD Option | Select data port control signal operate mode      | Follow SYNC – When E1 link synchronization, signals will be active ALWAYS ON – Enable always                                                                                                                                    | Follow SYNC                     |
| Main→ DTE/DCE<br>SETUP→ Clock<br>Polarity                                                                   | Select data port timing mode                      | NORM – normal operate mode                                                                                                                                                                                                      | NORM                            |

AccessCON-N64 User Manual S-Access

| Main→ DTE/DCE<br>SETUP→ Data | INV – Invert data port receive clock or transmit |  |
|------------------------------|--------------------------------------------------|--|
| Polarity                     | data                                             |  |

After setting any configuration with AccessCON-N64 / Unfr, the internal NVRAM will save setting immediately. When occur power down-to-up process, the AccessCON-N64 / Unfr will recover setting automatically.



#### 3 OPERATION

#### 3.1 General

In this chapter you will find detailed operating instructions for the AccessCON-N64.

The information presented in this chapter includes:

- Description of indicators and LCD screens.
- Operating procedures.

Refer to Chapter 4, Troubleshooting & Diagnostic and troubleshooting instructions.

#### 3.2 Indicators

Figure 3.1 and Figure 3.2 illustrates the top panel of AccessCON-N64 and AccessCON-N64 Unfr.

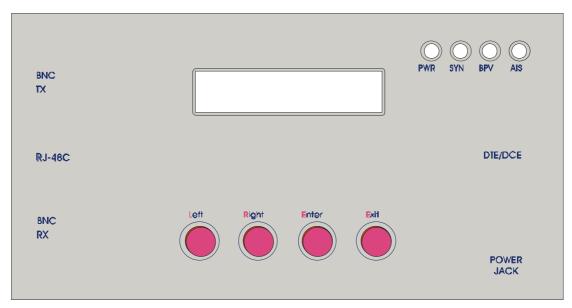
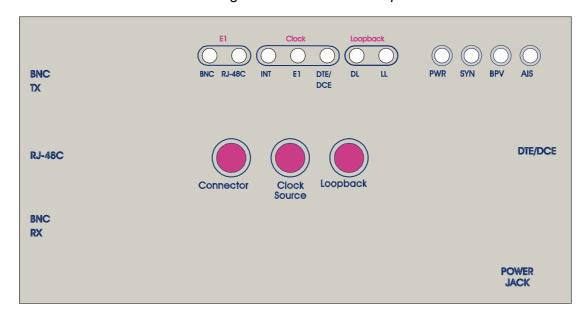




Fig. 3.1. AccessCON-N64 panel





#### Fig. 3.2. AccessCON-N64 Unfr panel

Table 3.1 lists the functions of the controls and indicators located on the top panel of the **AccessCON-N64**.

Table 3.1.

| Ν  | Control or Indicator             | Function                                                                                                                       |
|----|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| 1  | PWR indicator                    | Lights when AccessCON-N64 is powered                                                                                           |
| 2  | SYN indicator                    | Lights when the E1 link port synchronization                                                                                   |
| 3  | BPV indicator                    | Lights when one or more bipolar violations detected on E1 link receiver.                                                       |
| 4  | AIS indicator                    | Lights when two consecutive double frames each contain two or fewer zeros out of 512 bits, and when framing alignment is lost. |
| 5  | Left, Right, Enter, Exit buttons | When depressed, activates the LCD screen to move to next by your choose.                                                       |
| 6  | BNC / RJ48C indicator            | Lights to indicate E1 link port selected                                                                                       |
| 7  | INT / E1 / DTE(DCE)              | Lights to indicate clock sources selected                                                                                      |
| 8  | DL / LL                          | Lights to indicate loopback selected, if clean to operate in normal case                                                       |
| 9  | Impedance button                 | When depressed, changes setting between BNC and RJ48C.                                                                         |
| 10 | Clock Source button              | When depressed, changes the Clock reference source. Keep to depress will to change into next mode.                             |
| 11 | Loopback button                  | When depressed, activates LL / DL / Normal cycle.                                                                              |

#### 3.3 Operating Instructions

AccessCON-N64 are designed for unattended operation. After settings are completed, AccessCON-N64 operates automatically.

Connect the AC power adapter to the mains outlet, the AccessCON-N64 powered on automatically. Initially, AccessCON-N64 performs a self-test. Observe the following top-panel indicator:

- During the self-test, all the AccessCON-N64 indicators should illuminate: confirm that all are operating.
- During the test second step, all the indicators except PWR must blinks.
- Following the test, all the indicators except PWR.
- AccessCON-N64 are now ready for operation.

#### **Normal Indications**

During normal operation, the PWR and SYN indicators must light. All the other indicators must be off.



#### Fault Indications

If a fault occurs, the BPV and/or AIS alarm indicators light, and data transfer may be interrupted. To obtain additional information, observe the state of the LCD screens and then refer to *Troubleshooting Instructions* for troubleshooting information.

#### 3.4 LCD displays

The following sections describe the major options of the menu tree. Please refer to *Appendix B* for detail structure of the menu tree.

**Not:** The section provide with AccessCON-N64 unit only.

#### Main Menu

E1-E1 PCM31 RJ48C V35T 1984K

**E1:** First E1 indicates the operate mode. Other includes LL or DL When operates loopback function.

E1: Second E1 indicates reference clock sources such as INT or DTE.

PCM31: To indicate the E1 link framing type

**RJ48C:** To indicate the E1 link interface type such as BNC.

**V35T:** To indicate the user data port cable type such as below list

- V35T: SCSI-V35 Female cable, to connect V.35 DTE equipment and default setting.
- V35C: SCSI-V35 Male cable, to connect V.35 DCE equipment.
- 530T: SCSI-EIA 530 Female cable, to connect EIS-530 DTE equipment.
- 530C: SCSI-EIA 530 Male cable, to connect EIS-530 DCE equipment.
- 449T: SCSI-RS 449 Female cable, to connect RS-449 DTE equipment.
- 449C: SCSI-RS 449 Male cable, to connect RS-449 DCE equipment.
- X21T: SCSI-X21 Female cable, to connect X.21 DTE equipment.
- X21C: SCSI-X21 Male cable, to connect X.21 DCE equipment.

**1984K:** To indicate data port data rate.

#### TimeSlots mapping menu

TS00-07 31:1984K ALL [F\*\*\*\*\*\*] 01

TS00-07: To indicate the screen timeslot range

31: total assigned timeslots

**1984K:** user data port data rate (equal = total timeslots x 64K bps)

ALL: all timeslots (by framing type) are assigned or dis-assigned.

**Note:** When framing is PCM31, the timeslot 0 is inhibited. Its means TS 0 cannot be assigned by user. When framing is PCM30, the timeslot 0 and 16 are inhibited. When unframed mode, all timeslot can assigned by user.

F: Inhibited timeslot (Framing Used)

\*: user assign carry data timeslots

**01:** To indicate the cursor position timeslot number

#### E1 Link port alarm status

E1 STATUS

LOF:\* YEL:\* CRC:\*

LOF: Receive loss of frame alignment

YEL: Receive yellow alarm

CRC:When use frame mode with CRC, Receive error CRC-4 code

\*: Error or loss occurs

#### Data port control signals status

**Control Signals** 

CTS:\* RTS:\* DCD:\*

Control Signals

DSR:\* DTR:\*

\*: activates



#### 4 TROUBLESHOOTING & DIAGNOSTICS

#### 4.1 General

This chapter presents information related to the AccessCON-N64 diagnostics functions. The information presented in this chapter include:

- User-controlled test functions
- Troubleshooting

#### 4.2 User-Controlled Test Functions

#### **Loopback Function**

The user-controlled test functions are activated by means of the buttons and LCD screen.

#### **Digital Loopback**

Pressing Loopback button on top panel of AccessCON-N64 Unfr or find the function in Menutree of AccessCON-N64. The digital loopback returns the data sent by the remote E1 equipment towards the remote E1 equipment. In case, clock reference source will change to E1 automatically. Signal path shown in *Figure 4-1*.On Main menu screen you can find "DL" to confirm setting surely.

This test checks the connections between two E1 equipments, and the local E1 link port interface.

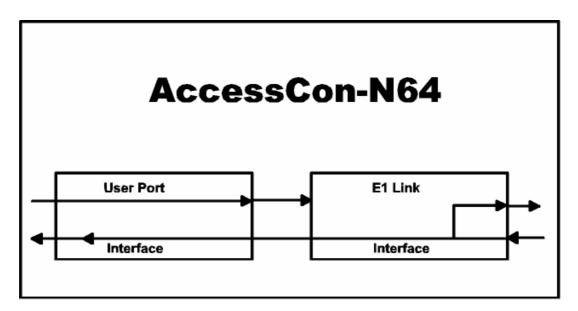



Fig. 4.1. Digital Loopback

#### Local Loopback

Pressing Loopback button on top panel of AccessCON-N64 Unfr or find the function in Menutree of AccessCON-N64. The local lopback returns the data sent by the local user's equipment towards the local user's equipment. The loopback is performed by connecting the data port transmit signal to the input of the data port receive path, within the data port interface of the local AccessCON-N64. Signal paths are shown in *Figure 4-2*.

This test checks the connections between the local AccessCON-N64 and the local user's equipment, and the local data port interface.

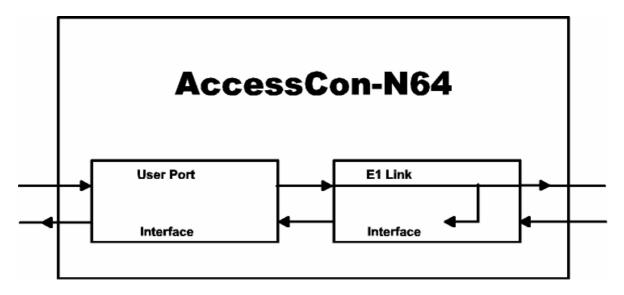



Fig. 4.2. Local Loopback

### 4.2 Troubleshooting Instructions

#### **Preliminary Checks**

In case a problem occurs, perform the following preliminary checks:

- Check the configuration of the local and remote AccessCON-N64 units against the prescribed configuration
- Check cable connections, and the equipment used on the E1 link connecting the local AccessCON-N64 to the remote equipment
- Observe the top-panel indicators and analyze the indications. Refer to *Status Indications* for descriptions of indicator functions.

#### **Troubleshooting**

If the trouble cannot be corrected by performing the preliminary checks listed above, use the information in Table 4.1 to identify the trouble symptoms and perform the actions listed under Corrective Measures in the order given until the problem is corrected.

If the problem cannot be corrected by carrying out the listed actions, have the AccessCON-N64 check by the technical support personnel.

| Ν | Trouble Symptoms                                                                | Probable Cause                               | Corrective Measures                                                                                                                                               |
|---|---------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | AccessCON-N64 are "dead" ( all the indicators, including                        | No power                                     | Check that both ends of the converter power cable are properly connected, and that power is available at the outlet                                               |
|   | PWR, are off)                                                                   | 2. Defective<br>AccessCON-N64                | Replace the AccessCON-N64                                                                                                                                         |
| 2 | Local AccessCON-N64 reports sync loss                                           | 1. External problem                          | Activate the local loopback. Check that local AccessCON-N64 SYN indicator is ON. If the indicator is ON, the problem is external                                  |
| 3 | BPV indicator on the local AccessCON-N64 blinks                                 | 1. Defective<br>AccessCON-N64                | Activate the local loopback. Check that the local AccessCON-N64 SYN indicator is On.                                                                              |
|   |                                                                                 |                                              | If indicator off, turn the local<br>AccessCON-N64 on with the local<br>loopback activated.                                                                        |
|   |                                                                                 |                                              | Check that the BPV and AIS alarm indicator turns off. If not, replace the AccessCON-N64                                                                           |
|   |                                                                                 | 2. Problems on the E1 link                   | Troubleshoot the E1 link between the local and the remote AccessCON-N64                                                                                           |
| 4 | Data port control signals are off                                               | 1. Local user's equipment is off, or is idle | Check that the user's equipment is powered, and its control signal lines are asserted. Perform self-test on the equipment                                         |
|   |                                                                                 | 2. Defective cable                           | Activate the local loopback, and check that the local user;s equipment receives its own transmission. If not, replace the cable connecting it to the AccessCONN64 |
| 5 | Local equipment does<br>not receive the data<br>sent by the remote<br>equipment | 1. External problem                          | Activate the digital loopback, and check remote E1 equipment receives its own transmission. If not, troubleshoot the remote AccessCON-N64 and thee E1 link        |
|   |                                                                                 | 2. Problem at local end                      | Perform the activities listed in No.4 above                                                                                                                       |
|   |                                                                                 | 3. Problem at remote end                     | Perform the activities listed in No.4 above                                                                                                                       |
| 6 | No transmission of data                                                         | Data port interface not inserted correctly   | Re-insert data port interface cable                                                                                                                               |

Table 4.1. Troubleshooting Chart.

## APPENDIX A INTERFACE SPECIFICATIONS

#### A.1 E1 Balanced Port connector

The E1 balanced port interface is terminated in an eight-pin RJ-48C connector, designated E1 LINK, and wired in accordance with Table A.1

Table A.1. E1 LINK Connector, Pin Allocation.

| Pin | Function                 |  |
|-----|--------------------------|--|
| 1   | Transmit Data Out (tip)  |  |
| 2   | Transmit Data Out (ring) |  |
| 3   | Not Connected            |  |
| 4   | Receive Data In (tip)    |  |
| 5   | Receive Data In (ring)   |  |
| 6   | Not Connected            |  |
| 7,8 | Not Connected            |  |

#### A.2 Data Port Connector

The data port interface is terminated in a 50-pin SCSI-type female connector, wired in accordance with Table A.2.

Table A.2. Data Port connector Wiring.

| Pin | Designation | Direction | Function                         |
|-----|-------------|-----------|----------------------------------|
| 1   | FGND        | -         | Frame ground                     |
| 2   | RxD (B)     | OUT       | RX data – B wire                 |
| 3   | RxD (A)     | OUT       | RX data – A wire                 |
| 4   | N/A         | -         | Not Connected                    |
| 5   | N/A         | -         | Not Connected                    |
| 6   | RxC (B)     | OUT       | RX CLK – B wire                  |
| 7   | RxC (A)     | OUT       | RX CLK – A wire                  |
| 8   | DCE_DCD (B) | IN        | Carrier detect from DCE – B wire |
| 9   | DCE_DCD (A) | IN        | Carrier detect from DCE – A wire |
| 10  | TxC (B)     | OUT       | TX CLK – B wire                  |
| 11  | TxC (A)     | OUT       | TX CLK – A wire                  |
| 12  | N/A         | -         | Not Connected                    |
| 13  | DCE_TxC (B) | IN        | TX CLK from DCE – B wire         |
| 14  | DCE_TxC (A) | IN        | TX CLK from DCE – A wire         |
| 15  | TM          | OUT       | Test mode                        |
| 16  | N/A         | -         | Not Connected                    |
| 17  | DTR         | IN        | Data transfer request            |

| 18 | RTS     | IN  | Request to send                |
|----|---------|-----|--------------------------------|
| 19 | RLB     | IN  | Remote loopbak                 |
| 20 | LLB     | IN  | Local loopbak                  |
| 21 | N/A     | -   | Not Connected                  |
| 22 | ETC (B) | IN  | External CLK – B wire          |
| 23 | ETC (A) | IN  | External CLK – A wire          |
| 24 | ID (3)  | IN  | Cable ID code bit 3            |
| 25 | ID (2)  | IN  | Cable ID code bit 3            |
| 26 | DSR (B) | OUT | Data set ready – B wire        |
| 27 | DSR (A) | OUT | Data set ready – A wire        |
|    |         | OUT | ·                              |
| 28 | CTS (B) |     | Clear to send – B wire         |
| 29 | CTS (A) | OUT | Clear to send – A wire         |
| 30 | DCD (B) | OUT | Carrier detect – B wire        |
| 31 | DCD (A) | OUT | Carrier detect – A wire        |
| 32 | ID (1)  | IN  | Cable ID code bit 1            |
| 33 | ID (0)  | IN  | Cable ID code bit 0            |
| 34 | SG      | -   | Signal ground                  |
| 35 | N/A     | -   | Not Connected                  |
| 36 | N/A     | -   | Not Connected                  |
| 37 | N/A     | -   | Not Connected                  |
| 38 | DSR     | OUT | Data set ready                 |
| 39 | CTS     | OUT | Clear to send                  |
| 40 | DCD     | OUT | Carrier detect                 |
| 41 | DTR (B) | IN  | Data transfer request – wire B |
| 42 | DTR (A) | IN  | Data transfer request – wire A |
| 43 | N/A     | -   | Not Connected                  |
| 44 | N/A     | -   | Not Connected                  |
| 45 | RTS (B) | IN  | Request to send – wire B       |
| 46 | RTS (A) | IN  | Request to send – wire A       |
| 47 | N/A     | -   | Not Connected                  |
| 48 | TxD (B) | IN  | TX data – wire B               |
| 49 | TxD (A) | IN  | TX data – wire A               |
| 50 | SG      | -   | Signal ground                  |



#### Adapter Cables for AccessCON-N64 Data Port

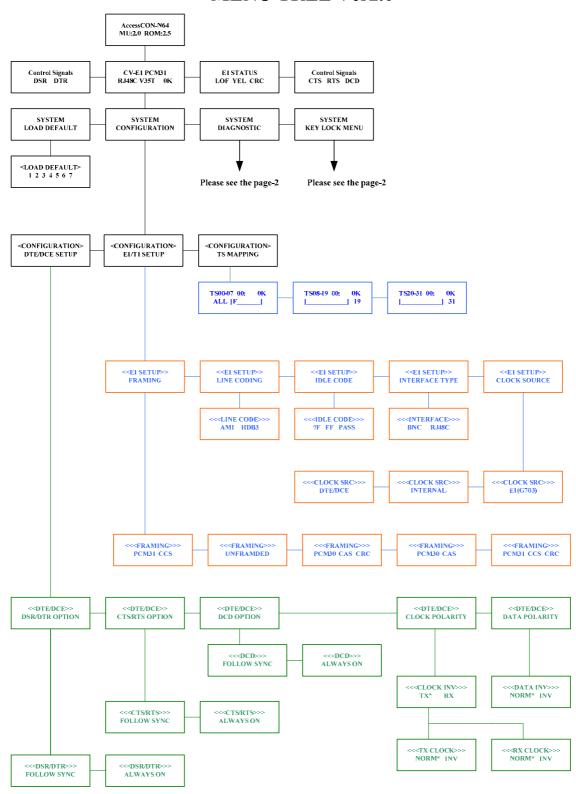
S-Access offers adapter cables data equipment to the 50-pin SCSI-type connector of AccessCON-N64 wiring and the pin allocations in the user side connectors are given in Table A.3 and Table A.4.

Tabel A-3. AccessCON-N64 Channel Interface Adapter Cable – DCE Clock Mode.

| Pin | Direction | Designation | V.35 | EIA-530 | RS-449 | X.21 |
|-----|-----------|-------------|------|---------|--------|------|
| 1   | -         | FGND        | Α    | 1       | 1      | 1    |
| 2   | OUT       | RxD (B)     | Т    | 16      | 24     | 11   |
| 3   | OUT       | RxD (A)     | R    | 3       | 6      | 4    |
| 4   | -         | N/A         |      |         |        |      |
| 5   | -         | N/A         |      |         |        |      |
| 6   | OUT       | RxC (B)     | Х    | 9       | 26     | 13   |
| 7   | OUT       | RxC (A)     | V    | 17      | 8      | 6    |
| 8   | -         | N/A         |      |         |        |      |
| 9   | -         | N/A         |      |         |        |      |
| 10  | OUT       | TxC (B)     | AA   | 12      | 23     | -    |
| 11  | OUT       | TxC (A)     | Υ    | 15      | 5      | -    |
| 12  | -         | N/A         |      |         |        |      |
| 13  | -         | N/A         |      |         |        |      |
| 14  | -         | N/A         |      |         |        |      |
| 15  | OUT       | TM          | K    | 25      | 18     | -    |
| 16  | -         | N/A         |      |         |        |      |
| 17  | IN        | DTR         | Н    | -       | -      | -    |
| 18  | IN        | RTS         | С    | -       | -      | -    |
| 19  | IN        | RLB         | BB   | 21      | 14     | -    |
| 20  | IN        | LLB         | J    | 18      | 10     |      |
| 21  | -         | N/A         |      |         |        |      |
| 22  | IN        | ETC (B)     | W    | 11      | 35     |      |
| 23  | IN        | ETC (A)     | U    | 24      | 17     | -    |
| 24  | IN        | ID (3)      | -    | -       | -      | -    |
| 25  | IN        | ID (2)      | -    | -       | 19     | 8    |
| 26  | OUT       | DSR (B)     | -    | 22      | 29     | -    |
| 27  | OUT       | DSR (A)     | -    | 6       | 11     | -    |
| 28  | OUT       | CTS (B)     | -    | 13      | 27     | -    |
| 29  | OUT       | CTS (A)     | -    | 5       | 9      | -    |
| 30  | OUT       | DCD (B)     | -    | 10      | 31     | 12   |
| 31  | OUT       | DCD (A)     | -    | 8       | 13     | 5    |
| 32  | IN        | ID (1)      | -    | 7       | -      | 8    |

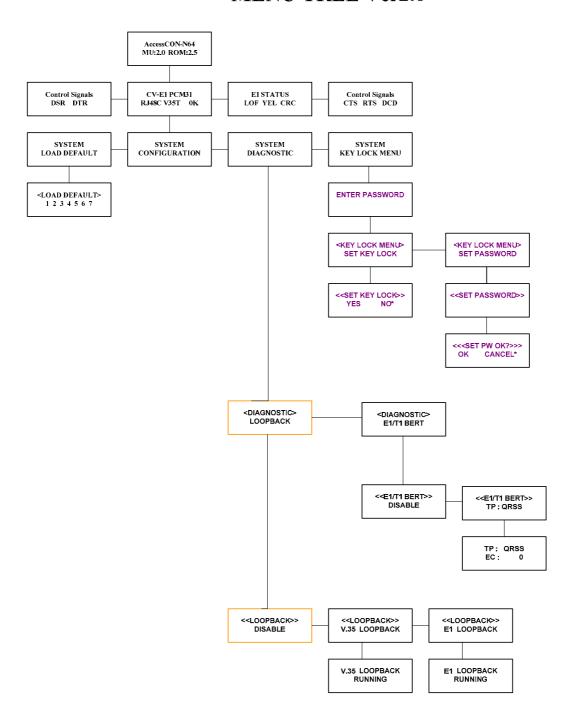
| 33 | IN  | ID (0)  | - | -  | -  | -  |
|----|-----|---------|---|----|----|----|
| 34 | -   | SG      | В | 7  | 19 | 8  |
| 35 | -   | N/A     |   |    |    |    |
| 36 | -   | N/A     |   |    |    |    |
| 37 | -   | N/A     |   |    |    |    |
| 38 | OUT | DSR     | E | -  | -  | -  |
| 39 | OUT | CTS     | D | -  | -  | -  |
| 40 | OUT | DCD     | F | -  | -  | -  |
| 41 | IN  | DTR (B) | - | 23 | 30 | -  |
| 42 | IN  | DTR (A) | - | 20 | 12 | -  |
| 43 | -   | N/A     |   |    |    |    |
| 44 | -   | N/A     |   |    |    |    |
| 45 | IN  | RTS (B) | - | 19 | 25 | 10 |
| 46 | IN  | RTS (A) | - | 4  | 7  | 3  |
| 47 | -   | N/A     |   |    |    |    |
| 48 | IN  | TxD (B) | S | 14 | 23 | 9  |
| 49 | IN  | TxD (A) | Р | 2  | 5  | 2  |
| 50 | -   | SG      | В | 7  | 19 | 9  |

Tabel A.4. AccessCON-N64 Channel Interface Adapter Cable – DTE Clock Mode.


| Pin | Direction | Designation | V.35 | EIA-530 | RS-449 | X.21 |
|-----|-----------|-------------|------|---------|--------|------|
| 1   | -         | FGND        | Α    | 1       | 1      | 1    |
| 2   | OUT       | TxD (B)     | S    | 14      | 23     | 9    |
| 3   | OUT       | TxD (A)     | Р    | 2       | 5      | 2    |
| 4   | -         | N/A         |      |         |        |      |
| 5   | -         | N/A         |      |         |        |      |
| 6   | OUT       | ETC (B)     | W    | 11      | 35     | -    |
| 7   | OUT       | ETC (A)     | U    | 24      | 17     | -    |
| 8   | -         | N/A         |      |         |        |      |
| 9   | -         | N/A         |      |         |        |      |
| 10  | -         | N/A         |      |         |        |      |
| 11  | -         | N/A         |      |         |        |      |
| 12  | -         | N/A         |      |         |        |      |
| 13  | IN        | TxC (B)     | AA   | 12      | 23     | -    |
| 14  | IN        | TxC (A)     | Υ    | 15      | 5      | -    |
| 15  | OUT       | RL          | BB   | 21      | 14     | -    |
| 16  | -         | N/A         |      |         |        |      |
| 17  | IN        | DSR         | Е    | -       | -      | -    |
| 18  | IN        | CTS         | D    | -       | -      | -    |

| 19 | IN  | TM      | K | 25 | 18 | -  |
|----|-----|---------|---|----|----|----|
| 20 | IN  | DCD     | F | -  | -  | -  |
| 21 | -   | N/A     |   |    |    |    |
| 22 | IN  | RxC (B) | Х | 9  | 26 | 13 |
| 23 | IN  | RxC (A) | V | 17 | 8  | 6  |
| 24 | IN  | ID (3)  | - | -  | -  | -  |
| 25 | IN  | ID (2)  |   |    | 19 | 8  |
| 26 | OUT | DTR (B) | - | 23 | 30 | -  |
| 27 | OUT | DTR (A) | - | 20 | 12 | -  |
| 28 | OUT | RTS (B) | - | 19 | 25 | -  |
| 29 | OUT | RTS (A) | - | 4  | 7  | -  |
| 30 | -   | N/A     |   |    |    |    |
| 31 | -   | N/A     |   |    |    |    |
| 32 | IN  | ID (1)  | - | 7  | -  | 8  |
| 33 | IN  | ID (0)  | В | 7  | 19 | 8  |
| 34 | -   | SG      | В | 7  | 19 | 8  |
| 35 | -   | N/A     |   |    |    |    |
| 36 | -   | N/A     |   |    |    |    |
| 37 | -   | N/A     |   |    |    |    |
| 38 | OUT | DTR     | Н | -  | -  | -  |
| 39 | OUT | RTS     | С | -  | -  | -  |
| 40 | OUT | LLB     | J | -  | -  | -  |
| 41 | IN  | DSR (B) | - | 22 | 29 | -  |
| 42 | IN  | DSR (A) | - | 6  | 11 | -  |
| 43 | -   | N/A     |   |    |    |    |
| 44 | -   | N/A     |   |    |    |    |
| 45 | IN  | CTS (B) | - | 13 | 27 | -  |
| 46 | IN  | CTS (A) | - | 5  | 9  | -  |
| 47 | -   | N/A     |   |    |    |    |
| 48 | IN  | RxD (B) | Т | 16 | 24 | 11 |
| 49 | IN  | RxD (A) | R | 3  | 6  | 4  |
| 50 | -   | SG      | В | 7  | 19 | 8  |

#### **APPENDIX B**


#### Menu Tree

# AccessCON-N64 MENU TREE Ver2.0



page-1

# AccessCON-N64 MENU TREE Ver2.0

